Analysis of Variance-based Mixed Multiscale Finite Element Method and Applications in Stochastic Two-phase Flows

نویسندگان

  • Jia Wei
  • Guang Lin
  • Lijian Jiang
  • Yalchin Efendiev
چکیده

The stochastic partial differential systems have been widely used to model physical processes, where the inputs involve large uncertainties. Flows in random and heterogeneous porous media is one of the cases where the random inputs (e.g., permeability) are often modeled as a stochastic field with high-dimensional random parameters. To treat the high dimensionality and heterogeneity efficiently, model reduction is employed in both stochastic space and physical space. An analysis of variance (ANOVA)-based mixed multiscale finite element method (MsFEM) is developed to decompose the high-dimensional stochastic problem into a set of lower-dimensional stochastic subproblems, which require much less computational complexity and significantly reduce the computational cost in stochastic space, and the mixed MsFEM can capture the heterogeneities on a coarse grid to greatly reduce the computational cost in the spatial domain. In addition, to enhance the efficiency of the traditional ANOVA method, an adaptive ANOVA method based on a new adaptive criterion is developed, where the most active dimensions can be selected to greatly reduce the computational cost before conducting ANOVA decomposition. This novel adaptive criterion is based on variance-decomposition method coupled with sparse-grid probabilistic collocation method or multilevel Monte Carlo method. The advantage of this adaptive criterion lies in its much lower computational overhead for identifying the active dimensions and interactions. A number of numerical examples in two-phase stochastic flows are presented and demonstrate the accuracy and performance of the adaptive ANOVA-based mixed MsFEM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale Analysis of Transverse Cracking in Cross-Ply Laminated Beams Using the Layerwise Theory

A finite element model based on the layerwise theory is developed for the analysis of transverse cracking in cross-ply laminated beams. The numerical model is developed using the layerwise theory of Reddy, and the von Kármán type nonlinear strain field is adopted to accommodate the moderately large rotations of the beam. The finite element beam model is verified by comparing the present numeric...

متن کامل

Multiscale finite element methods for porous media flows and their applications

In this paper, we discuss some applications of multiscale finite element methods to two-phase immiscible flow simulations in heterogeneous porous media. We discuss some extensions of multiscale finite element methods which take into account some limited global information. These methods are well suited for channelized porous media, where the long-range effects are important. This is typical for...

متن کامل

A stochastic heterogeneous multiscale method for porous media flow

A new multiscale algorithm is introduced based on the framework of the heterogeneous multiscale method. The mixed finite element method used ensures continuity of the flux within the entire domain. This method is shown to be free of “resonance error” and uses less memory than the mixed multiscale finite element method. To account for the highstochastic dimensionality of the permeability field, ...

متن کامل

PEIECWISE CONSTANT LEVEL SET METHOD BASED FINITE ELEMENT ANALYSIS FOR STRUCTURAL TOPOLOGY OPTIMIZATION USING PHASE FIELD METHOD

In this paper the piecewise level set method is combined with phase field method to solve the shape and topology optimization problem. First, the optimization problem is formed based on piecewise constant level set method then is updated using the energy term of phase field equations. The resulting diffusion equation which updates the level set function and optimization ...

متن کامل

Application of M3GM in a Petroleum Reservoir Simulation

Reservoir formations exhibit a wide range of heterogeneity from micro to macro scales. A simulation that involves all of these data is highly time consuming or almost impossible; hence, a new method is needed to meet the computational cost. Moreover, the deformations of the reservoir are important not only to protect the uppermost equipment but also to simulate fluid pattern and petroleum produ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014